Tech-Art - Lyra Recherche et développement GP

Loic BRAUD - Antoine FONTVERNE

Décembre 2025 — Janvier 2026

Sommaire

Contents

1 Introduction
1.1 Présentation du projet

2 Dégats dynamiques

2.1 Volonté
2.2 Appliquer une brush de dégat
2.3 Représentation des dégats L
3 Découpe dynamique
3.1 Volonté e
3.2 0Outil . . . e
3.3 Clpping o
3.4 Capping e
3.5 Compute Shader e
4 Reconstruction du mesh
4.1 Volonté e e
4.2 Mesh-Basniveau
4.2.1 Static Mesho
4.2.2 Dynamic Mesh
4.2.3 Procedural Mesh
4.2.4 Skeletal Mesh e
4.3 Mesh - Haut niveau e e

5 Conclusion
5.1 Documentation

1 Introduction

1.1 Présentation du projet

Ce document explique la démarche ainsi que la recherche technique pour 'implémentation et la mise
en place d’'un systeme de dégats et de découpe dynamique de meshes. Nous aborderons des no-
tions en rapport avec les materials, les compute shaders, ’écriture dans des textures en runtime ainsi
que des algorithmes de mathématiques 3D. Vous trouverez aussi d’autres techniques que nous avons
expérimentées mais auxquelles nous n’avons pas donné suite.

Ce projet a été réalisé dans Unreal Engine 5.6, en étroite collaboration entre une équipe de deux Game
Programmers : Loic BRAUD et Antoine FONTVERNE ainsi qu'une equipe de Game Artists Eliott
CHU, Ana GOERRIAN, Gabriel HAMCHA et Lou LEBOUCHER.

Ce document détaille de nombreuses techniques et recherches de bas niveau. Bien que de nombreuses
illustrations soient disponibles, une image ne vaut pas toujours mille mots. Nous nous excusons si le

document peut sembler dense ou lourd a la lecture.

Bonne lecture !

-—-w‘;-

|

o

-

((
(@

https://github.com/loicbraud95
https://github.com/Auzuras
https://www.artstation.com/murabto
https://www.artstation.com/murabto
https://www.artstation.com/anagoerrian
https://www.artstation.com/gabriel_hamcha
https://www.artstation.com/shemooji

2 Dégats dynamiques

2.1 Volonté

Notre volonté pour le systeme de dégats était de développer un systeme se basant sur celui de Dead
Island 2, c’est-a-dire quelque chose de dynamique et modulable. Le systeme F.L.E.S.H utilise des
splatter maps ou textures de dégats pour enregistrer des informations et permettre au mesh qui lit
cette texture de représenter les dégats subis. Pour cela, il faut dans un premier temps déplier les UVs
du mesh dans une texture, puis écrire une brush de dégats au bon emplacement dans cette derniere,
puis envoyer au mesh la splatter map.

Figure 1: Splatter map et brush de dégat du systeme F.L.E.S.H

2.2 Appliquer une brush de dégat

Nous avons interprété que les splatter maps étaient des render targets qui étaient liées au material du
zombie lors de la création de 'instance du material. Or, pour écrire dans une render target, il existe 2
solutions : la node Draw Material to Render Target et le component Scéne Capture 2D. Apres plusieurs
tests avec la premiere node, on ne pouvait pas indiquer le mesh qui devait étre rendu par le material, la
node draw material était donc inutilisable, car elle n’utilisait pas les UVs du mesh. Nous nous sommes
donc penchés sur le component de capture. Ce component possede une fonction ” Capture Scene” qui
permet de prendre en photo la scéne avec une caméra fictive et d’écrire le résultat dans la render target.

Notre premiere approche utilisait la node Find Collision UV : elle permet de donner les coordonnées
UV d’un mesh touché sur Hit. Or, nos tests se portaient, dans un premier temps, sur le mesh de base
d’Unreal, un skeletal mesh. Et apres recherche, la node renvoyait toujours un Vector2 nul, car elle
ne fonctionnait pas avec ce type de mesh. Nous avons donc écarté cette hypothése, car nous voulions
un systeme qui s’applique a n’importe quel type d’objet. De plus, avec cette coordonnée UV, nous
aurions eu le centre du decal, mais pour ensuite sampler la brush sur la surface, la tache aurait été
difficile et demandait de la recherche sur la manipulation des UVs et autres.

I Find Collision UV

Hit uvx

» UVChannel £| uvy

Return Value

Figure 2: Node blueprint qui
récupere les UVs grace au hit

Nous nous sommes ensuite penchés sur les decals internes d’Unreal. L’avantage est qu’ils s’appliquent
trés bien sur les surfaces, sont faciles a faire apparaitre sur un point d’impact et donnent un résultat
plutot satisfaisant sur 'empilement et sur un mesh animé. En modifiant quelques parametres dans
le material pour limiter le stretch sur I'application de surface, tels qu'un character, nous pouvions
réfléchir & comment écrire les informations dans une splatter map. Cependant, 1'utilisation de la cap-
ture du component pour écrire dans une splatter map ne pouvait pas fonctionner avec I’approche des
decals, car elle ne représentait pas une texture des UVs dépliés. Une autre piste était de sampler les
decals grace a une node dans les materials nommée DBuffer. On peut récupérer des informations telles
que la Base Color, les normales, la roughness et autres. Or, lors du passage a la représentation en
enfongant les vertex grace au World Position Offset (WPQO), en multipliant la valeur de profondeur
stockée dans les decals par les normales des vertex, une erreur interne d’Unreal empéche la compilation.
Nous n’avons pas réussi & trouver de solution & ce probléeme méme en demandant a nos professeurs.
Nous avons donc exploré une nouvelle piste, qui sera celle utilisée pour le reste du projet.

Figure 3: Test avec les decals d’Unreal et lecture
de leur data

Cette troisieme technique consiste & créer un material
qui permet de déplier les UVs en world space, puis de
continuer sur la volonté d’utiliser les render targets, en
capturant avec la Sceéne Capture 2D la projection des
UVs en world space, avec 'application entre-temps de la
brush de dégat.

Figure 4: Capture du material d’'unwrap,
avec application d’une brush, via le com-
ponent de Scene Capture 2D

Dans un premier temps, lors de nos recherches, on ne montrait pas comment appliquer une brush
personnalisée dans le material, ils utilisaient la node Sphere Mask.

Figure 5: Différence entre l'utilisation du sphere
mask d’unreal et un masque circulaire personnalisé

Nous avons ensuite réussi & appliquer un motif en particulier, en manipulant les vecteurs directeurs
des UVs ainsi que des opérations pour gérer le radius de 'impact.

Figure 6: Représentation de la brush avec cor- Figure 7: Application de la splatter map avec
rection des UVs le decal étoile

Figure 8: Application de la splatter map avec un
decal circulaire

2.3 Représentation des dégats

Dans le systeme F.L.E.S.H, les brush de dégats enregistre des informations dans chaque canal RGBA.
Lors de ce projet nous avons eu le temps de nous pencher uniquement sur le renfoncement des blessures.
Pour améliorer le rendu de ’enfoncement on a d’abord créer une brush de dégat personnalisé pour
donné la forme voulu puis on a appliqué un dégradé sur ’alpha afin de creuser de fagon smooth le mesh.

Figure 10: Résultat lors de I'application de la
Figure 9: Brush de dégat avec dégradé brush dégradée

Nous avons ensuite voulu essayer la tessellation au lieu du WPO pour modifier la position des ver-
tex. Or, en activant Nanite pour la tessellation, nous avons eu des problémes avec notre systéme
précédemment implémenté, malgré le résultat convaincant en utilisant des valeurs par défaut sans
splatter map. Nanite modifie les vertex de base du mesh ainsi que ses UVs.

Figure 11: UVs dépliés du mesh de base

Figure 13: Artefacts lors de 'unwrap Figure 14: Résultat de la tessellation

Nous sommes donc revenus sur le WPO, mais en ajoutant une texture qui décrit en nuances de gris a
quel point on peut creuser dans le mesh. Dans notre source, ils utilisaient une morph target, or nous
n’avons pas eu le temps d’implémenter ce systéme, et la texture d’épaisseur donnait un résultat qui
nous convenait.

Figure 17: Résultat avec application de la map
Figure 16: Map d’épaisseur d’épaisseur

Figure 18: Résultat peluche Figure 19: Résultat cookie

3 Découpe dynamique

3.1 Volonté

Les premieres envies pour la découpe de mesh étaient d’avoir un outil d’abord capable de couper
n’importe quel mesh a ’aide d’un plan. Nous envisagions d’avoir une seconde version permettant de
découper le mesh avec des formes géométriques plus complexes. Cette idée fut écartée apres avoir vu
Ienvergure que risquait de prendre la premiere version du systeme.

Figure 21: Exemple de coupe avec un autre
Figure 20: Exemple de coupe avec un plan mesh

Nous savions que de tels outils existaient déja dans Unreal Engine. Cependant, notre objectif était
de comprendre comment pouvoir faire un outil similaire a celui déja présent. De plus, celui-ci pouvait
ainsi faire office de comparaison.

L’un des premiers objectifs avec le systeme de découpe était qu’il soit rapide. En regardant la conférence
sur le systeme de Dead Island 2, nous avons décidé de partir sur des compute shaders comme eux.
Cette option nous permet de profiter du parallélisme de la carte graphique et nous permet aussi de
découvrir une nouvelle technologie que nous n’avions jamais utilisée auparavant.

Nous tenons a préciser que notre solution n’a pas bénéficié de beaucoup d’itérations, celle-ci étant
relativement bien documentée et ayant marché du premier coup.

3.2 Outil

"B SiiceLyrabDynamicMeshWithPlane

(7 GetUpvector Generate Clipped Mesh
arget Return Value @ -

Plane

Target Relative Lc

Figure 22: Screenshot de notre outil de clipping

Voila l'outil mis en place. Tres simple, il prend en entrée le Mesh & découper, un point et la normale
du plan. Les informations du plan sont converties dans l'espace local du mesh (Espace dans lequel tous
les calculs ont lieu). Il est possible de demander ou non la seconde partie du mesh, ce qui simplifie ou
non le shader (Moins de buffer d’entrée et de sortie) et s’il faut régénérer les collisions du mesh (Cette
partie est entiérement gérée par le mesh du moteur). En sortie, il donne le mesh nouveau créé s’il y
en a un et la liste des points et des normales (En world space) du mesh sur le plan. (Ils devaient étre
utilisés pour la mise en place d’une solution abandonnée)

3.3 Clipping

Afin de couper le mesh, nous appliquons un simple algorithme de clipping sur celui-ci.

S
m

Figure 24: Exemple
Figure 23: Exemple de la consitution
d’un mesh d’un mesh

L’algorithme consiste & seulement couper un triangle a I’aide d’un plan. Avec I'aide du compute shader,
chaque thread de la carte graphique s’occupe d’un triangle a la fois.

A A

Figure 25: Premier résultat de coupe du Figure 26: Deuxieme résultat de coupe
triangle du triangle

Afin de mettre en place la découpe, nous avons juste suivi deux tutoriels différents que nous avons
combinés pour effectuer notre solution. Ce qui est important a savoir, c¢’est que lorsque ’on coupe un
triangle, il nous donne soit un nouveau triangle, soit un parallélogramme qu’il faut rediviser en deux
triangles. (Voir au-dessus)

Afin de savoir si un plan coupe un triangle, il faut déja définir ce qu’est un plan :

N-X—-c=0

N est la normale au plan, ¢ un scalaire et X Un point quelconque sur le plan. Il est possible de savoir
facilement ou se trouve un point par rapport au plan grace a cette formule. Pour n’importe quel point
Y, ce point est du coté positif du plan si :

N-Y—-¢>0
Du c6té négatif du plan, si :

N-Y—-—¢c<0

Sur le plan si :

N-Y—-c=0

En se basant sur cette formule et ces propriétés, il est tres simple de mettre en place notre algorithme.
Celui-ci se déroule en trois grandes étapes.

La premiere étape est le calcul des distances signées. Il y a une par point. Elles représentent la situation
du point par rapport au plan. Comme vu précédemment par les trois propriétés, elles peuvent étre du
cOté positif ou négatif du plan ou bien sur celui-ci. Le calcul que nous utilisons dans le code est une
version modifiée de la précédente formule :

ds = N- (Y — X)

Figure 27: Schéma des distances signées

Une fois les distances signées il est possible de récupérer les points d’intersection. Pour savoir si une
des arétes du triangle est intersecté il suffit de multiplier les distances 2 par 2 pour chaque aréte.
Si le résultat est positif alors les arréts sont du méme coté du plan, ce qui signifie qu’il n’y a pas
d’intersection. Dans le cas d’une intersection, il suffit de faire une interpolation linéaire des deux
points :

t= dsl/(dsl - dsO)

Vi=Voxt+Vix(1—1t)

V7 correspond au point interpolé entre Vy et Vi. dyo et dsq sont les deux distances signées correspon-
dant a ’aréte traitée.

La derniere étape consiste a recréer les triangles. Pour ¢a, nous devons savoir comment le triangle est
coupé et comment le reconstruire. Il existe 8 possibilités de coupe pour le triangle. Chaque cas utilise
des indices et des intersections particulieres.

Afin de savoir dans lequel des 8 cas notre triangle se trouve, nous allons former un masque de triangle.
Nous créons ce masque grace a des déplacements binaires. Si une distance signée est négative, on
déplace un bit dans le masque pour chaque sommet, ce qui donne la configuration du triangle (allant
de 0a7).

Une fois la configuration indentifiée il suffit de reconstruire le triangle a I'aide des indices et des
intersections du triangle actuellement traité.

10

Figure 28: Schéma des 8 différents cas de coupe du triangle

3.4 Capping

Le capping ou la triangulation du mesh était un de nos objectifs pour ce projet. Le but de cette
méthode est de re-former la géométrie d’une section ouverte d’'un mesh. En effet, apres "application
du clipping de notre mesh, nous sommes laissés avec un trou béant a l'intersection du plan.

aad

&
Figure 29: Notre Figure 31: Exemple de géométrie
rendu sans capping Figure 30: Exemple de mesh coupé apres capping

Il y avait deux solutions que nous souhaitions explorer, mais que nous n’avons pas pu implémenter par
manque de temps. La premiére est ’'Ear Clipping, une approche simple pour générer de la géométrie.
Cependant, cette méthode est majoritairement séquentielle, chaque nouveau triangle sert aux étapes
suivantes.

Etant donné notre utilisation des compute shaders, nous recherchions une approche parallélisable.

La triangulation de Delaunay répond mieux a cette contrainte, car il est possible de créer des sous-
ensembles de points indépendants, de les trianguler en parallele, puis de les fusionner.

11

(a) Insert a new point in Delaunay (b) Connect the new point to the three
triangle surrounding vertices

V* V** V* V** V* V**
u u
’ v , o ’ v
\% % . % . »
~ 7’ ~ ’ A
SN SN (c) Use Local Optimization Procedure :
C se Local ptimization Procedure to oo
v v v optimize the triangular network (d) Generate the new Delaunay triangle
Figure 32: Ear Clipping Figure 33: Triangulation de Delaunay

3.5 Compute Shader

Comme expliqué auparavant, tout notre algorithme est exécuté sur un compute shader. La mise en
place en elle-méme du compute shader ne fut pas compliquée et n’a pas posé de probleme. En revanche,
nous avons fait face & un souci concernant ’allocation des buffers de sortie du compute shader. Nous
envoyons en entrée plusieurs informations au compute shader (Vertices et indices). Le probléme est
que nous ne savons pas a la création du shader combien de vertices ou d’indices vont sortir du compute
shader apres la coupe du mesh.

La premiere solution & laquelle nous avons pensé est de réserver un buffer de sortie de la méme taille
que le buffer d’entrée. Le souci est que la coupe d’un triangle peut en créer un de plus au maximum.
Si la géométrie est mauvaise, nous risquons de dépasser en mémoire.

La deuxieme solution que nous avons adoptée pendant un moment est de doubler ou d’augmenter le
buffer d’'une marge fixe par rapport a celui d’entrée. La limite de cette solution réside dans une utilisa-
tion mémoire qui devient trop importante. Un seul mesh high poly pourrait faire exploser 'utilisation
mémoire. Le risque est aussi que cet espace mémoire va souvent étre gaché et vide.

La derniere solution que nous avons implémentée est un peu plus lourde mais permet de pallier les deux
dernieres solutions. Nous décidons de pré-calculer la taille requise du buffer. Nous avons construit une
succession de compute shader. Le premier pré-calcule les tailles des buffers requis, puis nous exécutons
le deuxieme shader pour couper le mesh.

Nous avons fait des recherches afin de bien comprendre comment utiliser le RHI (Render Hardware In-
terfece) et le RDG (Render Dependency Graph) d’Unreal. Cela nous a permis de créer des ”pipelines”
de compute shaders. Nous voulions aussi, comme expliqué précédemment, enchainer un troisieme
compte shader générant le capping.

(Input Data) C Input Data) (Input Data)
(Output Space) (Output Space) (Output Space)
(Output Data) (Output Data I Wasted Space) (Output Data)

Figure 34: Premiere solu- Figure 35: Deuxiéme solution (Espace Figure 36: Troisieme so-
tion (Espace dépassé) gaché) lution (Espace exact)

Il est toutefois possible de noter une probable perte de performance dans notre shader. Ne pouvant
prédire combien de triangles une exécution va sortir, nous devons synchroniser un compteur pour savoir
ou écrire notre triangle. Cette synchronisation prend du temps et peut ralentir notre écriture. Une
solution pourrait étre de réserver deux emplacements mémoires dans le cas ot un deuxieme triangle
est écrit, évitant ainsi la synchronisation mais prenant plus de place.

12

‘ TriangleO , ‘ Triangle2 ,
(TO / T3 / \
A\ X X v

Figure 37: Solution de sortie de mesh

La dernieére limitation de notre approche est le readback. Le readback est la lecture des données
calculées sur la carte graphique sur le processeur. C’est une opération qui prend malheureusement
beaucoup de temps afin de transférer ces données d’un composant a l'autre.

GPU Pre Pass Main Pass

Retrive Send Input Retrive Triangle Send Input Retrive Send Mesh
cPu Mesh Data data @— data Mesh Data Data
Figure 38: Premiere version des échanges GPU - CPU

Ci-dessus était la premiere version de notre pipeline de compute shaders avec beaucoup de readback.

GPU F \
cPU Send Input { Retrive Triangle Retrive
data Information Mesh Data

Figure 39: Deuxieme version des échanges GPU - CPU

Pre Pass Main Pass

Send Mesh
Data

Nous avons réussi a réduire les interactions en envoyant une seule fois des données partagées entre les
deux shaders sur la carte graphique.

GPU Pre Pass Main Pass
(Send Input \\ [Retrive Triangle \

CPU .
_ data J _ Information /

Figure 40: Hypothese de version des échanges GPU - CPU
Une forme d’optimisation serait d’arriver a trouver un moyen de récupérer les données du vertex shader

directement depuis la carte graphique et de les mettre a jour de la méme maniere. Si une telle option
est possible, nous pourrions arriver a cette optimisation ci-dessus.

13

Au vu du choix du compute shader, voici quelques benchmarks que nous avons effectués entre 1’outil
du procédural mesh component d’Unreal (CPU only, single thread) et notre version (GPU only, multi
threads). A noter ici que notre benchmark ne prend pas en compte le temps de readback entre le GPU
et le CPU, ce qui le rend un peu plus lent que ce qui en ressort sur le benchmark, mais reste toujours
plus efficace que la version du moteur.

[BFEClipperPrepass s BligErroceduralMesh

Figure 41: Notre clipper 15K triangles Figure 42: Unreal clipper 15K triangles

Sur 15 000 triangles, nous sommes 48 fois plus rapide que le moteur. 33.8 microsecondes contre 1.6
millisecondes.

[BFEClipperPass
[BEClipperPrepass

BIBEProceduralMesh 2 347.9ms

Figure 43: Notre clipper 2M triangles Figure 44: Unreal clipper 2M triangles

Sur 2 000 000 triangles nous sommes 4800 fois plus rapide que le moteur. 1.5 millisecondes contre 7
secondes.

De maniere logique, plus nous avons de triangles a traiter, plus le multithreading nous est bénéfique
et efficace en notre faveur, contre le seul thread alloué pour cet outil par le moteur.

14

4 Reconstruction du mesh

4.1 Volonté

La reconstruction a pour but de pouvoir réassembler le mesh dans un format interprétable et pouvant
étre rendu a I’écran par le moteur. Notre shader nous permet d’obtenir un ou deux meshes selon la
section et le choix de 'utilisateur, mais le moteur ne sait pas comment le lire.

Cette section se divise en deux parties. D’abord, nous parlerons de la représentation du mesh en
mémoire dans le moteur au plus bas niveau. Nous verrons ensuite comment cette reconstitution
marche au plus haut niveau du moteur pour 1'utilisateur.

4.2 Mesh - Bas niveau

Le but de notre projet était de faire des dégats et une découpe dynamique sur le mesh. Méme si c’est
une solution, nous ne voulions pas faire notre propre format de mesh dans le moteur. Nous avons
privilégié utiliser des outils préexistants.

Un point important & mentionner : aucun de nos meshes n’utilise Nanite d’Unreal Engine. Nous avons
choisi de travailler avec ce que nos artistes nous ont fourni, sans ajustement de niveau de détail.

4.2.1 Static Mesh

La premiere solution que nous envisagions était le Static Mesh Component. Vu que celui-ci ne change
pas en mémoire, il utilise une pass de rendu rapide. Cependant, il devient compliqué de modifier ses
données en exécution.

Nous pouvions le reconstruire grace a la fonction UStaticMesh::BuildFromMeshDescriptions().
Le probléme est que construire une statique mesh est long et pas adapté pour du runtime. (C’est ce
qui est fait quand le moteur charge)

4.2.2 Dynamic Mesh

La deuxieme solution était le Dynamic Mesh Component. C’était un tres bon choix. Il est plus lent en
rendu car son buffer est update pour envoyer les changements. Cependant, c’est un mesh component
fait pour étre modifiable.

Plusieurs points nous ont bloqués. Premierement, le mesh est d’abord pensé pour les outils éditeurs
du moteur. Certaines des fonctions que nous utilisions ne pouvaient pas marcher en build. La création
du mesh ne prenait pas facilement certains parametres comme les tangentes ou plus d’'un UV channel.
Nous avions aussi des problemes de rendu avec. Celui-ci apparaissait plus sombre que les autres meshes.
Derniérement celui-ci dépendait d’un plugin externe au moteur de base. Nous voulions éviter d’avoir
une dépendance supplémentaire.

4.2.3 Procedural Mesh

La derniére solution étudiée et qui fut gardée est le Procedural Mesh Component. Similaire au dynamic
mesh mais sans ses points négatifs. Prend beaucoup de parametres & la création, est pensé entierement
pour le runtime, est de base dans le moteur et n’a aucun probleme de rendu.

Nous l'avons aussi pris car : Unreal Engine propose déja des fonctions de découpe de mesh et de
copie de static mesh sur le Procedural Mesh Component, deux fonctions que nous avons donc recréées.
En cas d’abandon ou d’échec de notre part, cela nous permettait de nous rabattre sur une solution
préfaite. Il nous était aussi facile de benchmarker les performances si nécessaire.

15

Figure 45: Différences entre les trois meshs : Static,
Dynamic, Procedural

4.2.4 Skeletal Mesh

Un de nos objectifs était aussi le Skeletal Mesh. Nous voulions pouvoir découper des mesh animés.
Nous avons décidé de ne pas nous attarder plus longtemps sur ce probleme a partir du moment ou
reconstruire un simple mesh sans animation nous posait des probléemes.

Pendant nos recherches, nous avons constaté que certaines personnes avaient déja tenté d’effectuer des
tentatives similaires a nos intentions sans grande réussite. Comme évoqué au début de la section, la
solution la plus propice serait sirement de recréer une structure en interne beaucoup plus bas niveau
nous permettant d’influer sur ce type de mesh.

Un autre probléeme auquel nous avons pensé est la question du skinning. Quand nous découpons un
mesh non animé, nous transformons le plan dans ’espace local du mesh. Cependant, pour un mesh
animé, si nous faisons cette méthode, nous obtiendrons un mesh dans une poisition par défaut. Une
solution que nous avons imaginée serait d’appliquer le skinning dans notre shader, calculer I'intersection
et d’enlever le skinning une nouvelle fois pour obtenir I'intersection sur le mesh local. Ce n’est bien
str qu’une hypothese et rien de tout ¢a n’a été testé.

Figure 46: Idée de solution pour le Skeletal Mesh

16

4.3 Mesh - Haut niveau

Chaque mesh découpable conserve une référence vers le blueprint au dessus qui agit comme manager.
Lors d’'une découpe, le mesh & séparer notifie, a la fin de I’exécution de ses compute shaders, que la
seconde moitié du mesh a bien été générée, et fournit une référence vers le nouvel objet. Une fois que
I’ensemble des meshes du blueprint concernés par la découpe ont été traités, les différentes parties sont
recombinées dans un blueprint du méme type que le blueprint manager initial. A I’exception de certains
cas particuliers comme le blueprint du chat en peluche, qui contient un squelette en métal. Dans ce cas
précis, la découpe ne génere pas un BP_Cat_Yarn_Sliceable, afin d’éviter la duplication du squelette,
mais un BP_LyraSliceableMesh_Ext_Int, qui correspond a la classe parente de ce blueprint. Une fois
cette étape terminée, les collisions sont activées et la simulation physique est lancée. Enfin, le nouveau
blueprint manager partage les méme splatter maps que le blueprint d’origine, ce qui permet a la fois
d’économiser de la mémoire et de conserver les dégats déja appliqués.

Figure 47: Découpage multiple et Figure 48: Activation des collisions et de la
démonstration BP_Cat_Yarn_Sliceable simulation physique

Figure 49: Exemple de découpe

A la suite de la découpe, nous avons voulu augmenter le
détail en appliquant sur tout le tour de la découpe une
brush de dégats. Or, le systeme ne pouvait pas effectuer
cette tache sur 300 points voire plus sans que les perfor-
mances soient impactées. Une solution aurait été que le
material dégrade tous les vertex a une certaine distance
du plan de découpe, toutefois, le temps nous a empéchés
de mettre cette solution en place.

¥

/J»
3
g

-
(e

Figure 50: Dégats sur le tour de la
coupure

17

5 Conclusion

Nous avons beaucoup appris lors de ce projet, que ce soit au niveau technique, avec la manipulation ap-
profondie des decals, des materials, ainsi que des render targets pour la partie des dégats dynamiques.
Pour la découpe, nous avons commencé a plonger dans le monde des compute shaders, avec leur mise
en place dans Unreal, I'utilisation du RHI et du RDG. A cela s’ajoutent les recherches effectuées au
bas niveau sur tous les types de mesh components, ainsi que des algorithmes mathématiques 3D pour
le clipping et le capping. Mais ce projet nous a aussi apporté une expérience tres enrichissante, de par
la collaboration avec des artistes.

5.1 Documentation

Ici se trouve la documentation utilisée pour mettre en place les différents objectifs du projet.

Principale inspiration :
- The Innards of F.L.E.S.H: Dead Island 2’s Gore System Dissected

Dégats dynamiques :

- Série de vidéos pour utiliser les decals Unreal

- Tuto sur l'utilisation des decals Unreal et la récupération de leurs données
- Tuto sur les dégats sur un personnage et la technique de dépliement d’UV
- Tuto sur la tessellation et d’autres techniques de déformation

Découpe dynamique :
- Clipping a Mesh Against a Plane
- Mesh-Plane Clipping — GeomAlgoLib

Meshs dynamiques :

- Mesh Generation and Editing at Runtime in UE4.26
- Dynamic Mesh Component

- UProceduralMeshComponent

Compute Shaders :

- Simple compute shader with CPU readback

- Modern OpenGL Tutorial - Compute Shaders

- Coding Adventure: Compute Shaders

- Getting Started with Compute Shaders in Unity

Triangulation / Capping :

- Triangulation by Ear Clipping

- Polygon Triangulation [1] - Overview of Ear Clipping
- Visualizing Delaunay Triangulation

- Delaunay Triangulation

18

https://www.youtube.com/watch?v=98j3XacsocQ
https://www.youtube.com/watch?v=_5-ix-wI5w8
https://www.youtube.com/watch?v=gHQtV4JCsfU
https://www.youtube.com/watch?v=gWVBiizwWsc
https://www.youtube.com/watch?v=kxsQ5m2IAXs
https://www.geometrictools.com/Documentation/ClipMesh.pdf
https://www.youtube.com/watch?v=t6VvtW8y9q4
https://www.gradientspace.com/tutorials/2020/10/23/runtime-mesh-generation-in-ue426
https://dev.epicgames.com/documentation/en-us/unreal-engine/BlueprintAPI/DynamicMeshComponent
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Plugins/ProceduralMeshComponent/UProceduralMeshComponent
https://dev.epicgames.com/community/learning/tutorials/WkwJ/unreal-engine-simple-compute-shader-with-cpu-readback
https://www.youtube.com/watch?v=nF4X9BIUzx0
https://www.youtube.com/watch?v=9RHGLZLUuwc
https://www.youtube.com/watch?v=BrZ4pWwkpto
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://www.youtube.com/watch?v=QAdfkylpYwc
https://ianthehenry.com/posts/delaunay/
https://www.youtube.com/watch?v=GctAunEuHt4

	Introduction
	Présentation du projet

	Dégats dynamiques
	Volonté
	Appliquer une brush de dégât
	Représentation des dégâts

	Découpe dynamique
	Volonté
	Outil
	Clipping
	Capping
	Compute Shader

	Reconstruction du mesh
	Volonté
	Mesh - Bas niveau
	Static Mesh
	Dynamic Mesh
	Procedural Mesh
	Skeletal Mesh

	Mesh - Haut niveau

	Conclusion
	Documentation

